

Data Sheet

Customer:

Product:

Sizes.:

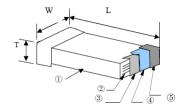
Multilayer Ceramic Chip Capacitor 01005/0201/0402/0603/0805/1206/1210/1808/1812 **Issued Date:** 07-Aug-23

Edition: REV.B4

VIKING TECH CORPORATION 光頡科技股份有限公司 No.70, Guangfu N. Rd., Hukou Township, Hsinchu County 303, Taiwan (R.O.C)

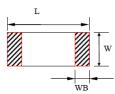
TEL:886-3-5972931 FAX:886-3-5972935•886-3-5973494 E-mail:sales@viking.com.tw

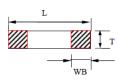
VIKING TECH CORPORATION KAOHSIUNG BRANCH 光頡科技股份有限公司高雄分公司 No.248-3, Sin-Sheng Rd., Cian-Jhen Dist., Kaohsiung, 806, Taiwan


TEL:886-7-8217999 FAX:886-7-8228229 E-mail:sales@viking.com.tw VIKING ELECTRONICS (WUXI) CO., LTD. 光頡電子(無錫)有限公司 No.22 Xixia Road, Machinery & Industry Park, National Hi-Tech Industrial Development Zone of Wuxi, Wuxi, Jiangsu Province, China Zip Code:214028 TEL:86-510-85203339 FAX:86-510-85203667•86-510-85203977 E-mail:china@viking.com.tw

Produced by (QC)	Checked (QC)	Approved by (QC)	Prepared by (Sales)	Accepted by (Customer)
07-Aug-23	07-Aug-23	07-Aug-23	07-Aug-23	
Kris Chen	Ben Chang	Ben Chang		

Multilayer Ceramic Chip Capacitor Multilayer Ceramic Chip Capacitor


Construction



1	Ceramic Dielectric	4	Nickel Layer:
2	Inner Electrodes	5	Tin Layer
3	Substrate Electrodes		

Dimensions

Capacitance ≤ 50V

Unit: mm

Туре	Size (Inch)	L	w	T/Symbol		WB
E5	01005	0.40±0.02	0.20±0.02	0.20±0.02	V	0.10±0.03
01	0201	0.60±0.03	0.30±0.03	0.30±0.03	С	0.15±0.05
01	0201	0.60±0.05	0.30±0.05	0.30±0.05	D	0.15±0.05
		1.00±0.05	0.50±0.05	0.50±0.05	Е	
02	0402	1.00±0.15	0.50±0.15	0.50±0.15	F	0.25±0.05
		1.00±0.20	0.50±0.20	0.50±0.20	Ν	
03	0603	1.60±0.10	0.80±0.10	0.80±0.10	Н	0.35±0.20
03	0003	1.60±0.20	0.80±0.20	0.80±0.20	В	0.35±0.20
05	0805	2.00±0.20	1.25±0.20	0.80±0.20	В	0.50±0.20
05	0805	2.00±0.20	1.25±0.20	1.25±0.20	J	0.50±0.20
				0.80±0.20	В	
06	1206	3.20±0.30	1.60±0.30	1.00±0.20	I	0.60±0.30
00	1200	5.20±0.30	1.00±0.50	1.25±0.20	J	0.00±0.30
				1.60±0.30	L	
				1.25±0.20	J	
10	1210	3.20±0.30	2.50±0.30	1.60±0.30	L	0.60±0.30
10	1210	3.20±0.30	2.50±0.30	2	R	0.60±0.30
				2.5	0	
08	1808	4.50±0.40	2.00±0.20	1.60±0.30	L	0.60±0.30
				1.25±0.20	J	
12	1812	4.50±0.40	3.20±0.30	1.60±0.30	L	0.60±0.30
				2.5	0	

[MCF Series]

Multilayer Ceramic Chip Capacitor

Capacitance > 50V

Туре	Size (Inch)	L	w	T/Symbol		WB
02	0402	1.00±0.05	0.50±0.05	0.50±0.05	E	0.25±0.05
03	0603	1.60±0.10	0.80±0.10	0.80±0.10	Н	0.35±0.20
				0.80±0.20	В	
05	0805	2.00±0.20	1.25±0.20	1.00±0.20	I	0.50±0.20
				1.25±0.20	J	
				0.80±0.20	В	
06	1206	3.20±0.30	1.60±0.30	1.00±0.20	I	0.60±0.30
00	1200	3.20±0.30	1.00±0.30	1.25±0.20	J	0.00±0.30
				1.60±0.30	L	
10	1210	3.20±0.30	2.50±0.30	1.25±0.20	J	0.60±0.30
10	1210	3.20±0.30	2.50±0.30	1.60±0.30	L	0.60±0.30
08	1808	4.50±0.40	2.00±0.20	1.25±0.20	J	0.60±0.30
08	1606	4.50±0.40	2.00±0.20	1.60±0.30	L	0.60±0.30
				1.25±0.20	J	
12	1812	4.50±0.40	3.20±0.30	1.60±0.30	L	0.60±0.30
				2	R	

Part Numbering

MCF	03	J	T	N	250	3R9
Product Type	Dimensions (L×W)	Capacitance Tolerance	Packaging	Dielectric	Voltage (VDCW)	Capacitance
	E5: 01005	A: ±0.05pF (Cap≦10pF)	T: Taping Reel	N: NPO (COG)	4V0: 4V	3R9: 3.9pF
	01: 0201	B: ±0.1pF (Cap≦10pF)	W: 13" Taping Reel	B: X7R	6V3: 6.3V	150: 15pF
	02: 0402	C: ±0.25pF (Cap≦10pF)		X: X5R	250: 25V	181: 180pF
	03: 0603	D: ±0.5pF (Cap≦10pF)			500: 50V	225: 2.2µF
	05: 0805	F: ±1%			101: 100V	106: 10µF
	06: 1206	G: ±2%			102: 1000V	
	10: 1210	J: ±5%			202: 2000V	
	08: 1808	K: ±10%			302: 3000V	
	12: 1812	M: ±20%				
		Z: +80/-20%				

Temperature Coefficient /Characteristics

Dielectric	Reference Temperature Point	Temperature Coefficient	Operation Temperature Range
NOP(COG)	20 °C	0±30ppm/ ℃	-55~125℃
X7R	20 °C	±15%	-55~125℃
X5R	20 °C	±15%	-55~85 ℃

Note : Nominal temperature coefficient and allowed tolerance of class $~\rm I$ are decided by the changing of the capacitance between 20 $^\circ\!C$ and 85 $^\circ\!C$. Nominal temperature coefficient of class $~\rm II~$ are decided by the temperature of 20 $^\circ\!C$.

Measurement method of dielectric withstanding Voltage for High Voltage MLCC

Rated Voltage Range	Measuring Method
100V≦Vr<500V	Force 200% Rated Voltage for 5 second. Max.Current should not exceed 50mA
500V≦Vr≦1000V	Force 150% Rated Voltage for 5 second. Max.Current should not exceed 50mA
1000V <vr≦2000v< td=""><td>Force 120% Rated Voltage for 5 second. Max.Current should not exceed 50mA</td></vr≦2000v<>	Force 120% Rated Voltage for 5 second. Max.Current should not exceed 50mA
2000V <vr≦5000v< td=""><td>Force 120% Rated Voltage for 5 second. Max.Current should not exceed 10mA</td></vr≦5000v<>	Force 120% Rated Voltage for 5 second. Max.Current should not exceed 10mA

General Capacitance & Voltage Capacitance & Voltage (NPO 6.3V~100V)

	lectric				<u></u>	<u>,,,,</u>							NF	o											
EIA	Size			04	02					0603					0805			12	06	12	10	18	08	181	12
Code	VDCW	6.3V	10V	16V	25V	50V	100V	10V	16V	25V	50V	100V	10V	16V	25V	50V	100V	50V	100V	50V	100V		100V		100V
0R1	0.1pF				E	E	E			Н	Н	Н				В	В		В						
0R2	0.2				E	E	E			Н	Н	Н				В	В		В						
	0.3				Е	Е	E			Н	Н	Н				В	В	В	В						
0R4	0.4				E	E	E			Н	H	Н				В	В	В	В						
					E	E	E			H	H	Н				В	В	В	В						
0R6	0.6				E	E	E			Н	<u>H</u>	Н				В	В	В	В						
0R7	0.7				E	E	E			Н	<u>H</u>	Н				В	В	В	В						
0R8					E	E	E			Н	<u>H</u>	Н				В	B	В	B						
	0.9				E	E	E			Н	H	Н				B	B	B	B						
1R0 1R2					E	E	E			H H	H H	H H				B	B	B	B		J				
					E	E	E			H	H	Н				B	B	B	B		J				
1R8					E	E	E			H	H	H				B	B	B	B		J				
					E	E	E			H	H	H				B	B	B	B		J		1		
	2.2				E	E	E			H	H	H				B	B	B	B		J		L		
					E	E	E			H	H	H				B	B	B	B		J		L		
					E	E	E			H	Н	Н				B	B	B	B		Ĵ		-		J
					E	E	E			Н	Н	Н				B	B	B	B		J		L		J
					E	E	Е			Н	Н	Н				В	В	В	В		J		L		J
					E	E	E			Н	H	Н				B	B	B	B		J		L		J
	5.0				E	E	E			Н	Н	Н				В	В	B	В		J		L		J
5R6	5.6				Е	Е	E			Н	Н	Н				В	В	В	В		J		L		J
	6.8				Е	Е	Е			Н	Н	Н				В	В	В	В		J		L		J
8R2	8.2				Е	Е	Е			Н	Н	Н				В	В	В	В		J		L		J
					E	Е	Е			Н	Н	Н				В	В	В	В		J		L		J
100					Е	Е	Е			Н	Н	Н				В	В	В	В	J	J	L	L	J	J
120	12				E	E	E			Н	H	Н				В	В	В	В	J	J	L	L	J	J
150	15				E	E	E			Н	<u>H</u>	Н				В	В	В	В	J	J	L	L	J	J
180	18				E	E	E			Н	<u>H</u>	Н				B	В	В	B	J	J	L	L	J	J
200	20				E	E	E			H	H	H				B	B	B	B	J	J	L	L	J	J
220	22 27				E	E	E			H	<u>н</u> Н	H H				B	B	B	B	J	J		L	J	J J
270 300					E					H	H	H				B			B	J	-	L	L	J	-
330	30 33				E	E	E			H	H	H				B	B	B	B	J	J	L	L	J	J
	39				E	E	E			H	H	H				B	B	B	B	J	J	L	-	J	J
470	39 47				E	E	E			H	H	H				B	B	B	B	J	J	L	L	J	J
560	56				E	E	E			H	H	H				B	B	B	B	J	J	L	L	J	
	68				E	E	E			H	H	H				B	B	B	B	J	J	L	-	J	J
750	75				E	E	Ē			H	H	H				B	B	B	B	J	J	L	L	J	J
820	82				E	E	E			Н	Н	Н				B	B	B	B	J	J	L	L	J	J
	100pF				Е	Е	Е			Н	Н	Н				В	В	В	В	J	J	L	L	J	J
121	120				E	Е				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
151	150				E	Е				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
181	180				E	E				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
201	200				E	E				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
221	220				E	E				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
271	270				E	E				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
301	300				E	Е				Н	Н	Н				В	В	В	В	J	J	L	L	J	J
331	330				E	E				Н	H	Н				В	В	В	В	J	J	L	L	J	J
361	360				E	E				Н	H	Н				В	В	В	В	J	J	L	L	J	J
391	390				E	ш				Н	<u>H</u>	Н				В	В	В	B	J	J	L	L	J	J
471 561	470 560				E	E				H	<u>н</u> Н	H H				B	B	B	B	J	J	L	L	J	J
					E											B			B	J	J			J	
681 751	680 750				E	E				H	H H	H H				B	B	B	B	J	J	L	L	J	J
	750 820		-		E	E				H	H	H				B	B	B	B	J	J	L	L	J	J
	1000pF				E	E				H	H	H				B	B	B	B	J	J	L	L	J	J
122			Е	Е	E	-				H	H					B	B	B	B	J	J	L	L	J	J
	1500		E	E						H	H					B	B	B	B	J	J	L	L	J	J
			Е	Е						Н	Н					В	В	В	В	J	J	L	L	J	J
	2000		Е	Е						Н	Н					В	В	В	В	J	J	L	L	J	J
	2200		Е	Е						Н	Н					В	В	В	В	J	J	L	L	J	J
	2700		Е	Е						Н	Н					В	В	В	В	J	J	L	L	J	J
		Е								Н	Н					В	В	В	В	J	J	L	L	J	J
392		Е								Н	Н					В		В		J	J	L	L	J	J
472		E								H	Н					В		В		J	J	L	L	J	J
										Н	<u>H</u>					В		В		J	J	L		J	J
682										Н	Н					В		В		J	J	L		J	J
822									н							В		B		J		L		J	J
	0.01uF								Н				J	J	J	J		L		J		L		J	J
	0.012							<u>H</u>					J	J	J	J		L		J		L		J	
	0.015							<u>н</u> Н					J	J	J	J		L		J		L		J	
	0.018							<u>н</u> Н					J	J	J	-		L		-		L		J	
	0.022							п					J	J	J	J		L		J		L		J	
	0.027												J	J	J			L		J		L		J	
	0.033		-										J	J				L		J	-	L		J	
	0.047												J							J		L		J	
	0.058												J					L		J		L		J	
	0.083												J					L		J		L		J	
-	0.100												J					L		J		L		J	
	letter ir															•	•								

Capacitance & Voltage (X7R 6.3V~100V)

Die	lectric									X	7R								
EIA	Size			04	02					06	03					08	05		
Code	VDCW	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V
101	100pF	E	E	E	E	E							Н						В
121 151	120 150	E	E	E	E	E	E	Н	Н	Н	Н	Н	H H	В	В	В	В	В	B
181	180	E	E	E	E	E	E	н	н	н	н	н	н	B	B	B	B	B	B
201	200	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
221 241	220 240	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	BB	B	B	B	B	B
241	270	E	E	E	E	E	E	Н	H	Н	H	H	Н	B	B	B	B	B	B
301	300	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
331	330	E	E	E	E	E	E	н	Н	н	н	Н	н	В	В	В	В	В	В
361 391	360 390	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
471	470	E	E	E	E	E	E	н	н	н	н	н	н	B	B	B	B	B	B
501	500	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
511 561	510 560	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
621	620	E	E	E	E	E	E	н	Н	Н	Н	Н	Н	B	B	B	B	B	B
681	680	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
751 821	750 820	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
102	820 1000pF	E	E	E	E	E	E	H H	H H	H	H	H H	H	B	B	B	B	B	B
122	1200	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
152	1500	E	E	E	E	E	E	Ξ	Н	H	H	Η	H	B B	B	B	В	В	B
182 202	1800 2000	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
222	2200	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	B	B	B	B	B
242	2400	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
272 302	2700 3000	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	BB	B	B	B	B	B
332	3300	E	E	E	E	E	E	н	Н	Н	Н	Н	Н	B	B	B	B	B	B
362	3600	E	E	E	E	E	E	Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
392	3900	E	E	E	E	E	E	н	Н	Н	Н	Н	Н	B B	B	В	B	B	B
472 502	4700 5000	E	E	E	E	E	E	H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
512	5100	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	B	B	B	B	B
562	5600	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
682 822	6800 8200	E	E	E	E	E		H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
103	0.01µF	E	E	E	E	E		н	Н	Н	Н	Н	Н	B	B	B	B	B	B
123	0.012	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
153	0.015	E	E	E	E	E		н	Н	н	н	Н	н	B	В	B	В	В	В
183 203	0.018 0.020	E	E	E	E	E		H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
223	0.022	E	E	E	E	E		Н	Н	Н	H	Н	Н	В	B	B	B	B	B
273	0.027	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
	0.030 0.033	E	E	E	E	E		H H	H H	H H	H H	H H	H H	BB	B	B	B	B	B
	0.039	E	E	E	E	E		Н	Н	н	Н	Н	н	B	B	B	B	B	B
	0.047	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	В	В	В	В	В
	0.051 0.056	E	E	E	E	E		H H	H H	H H	H H	H H	H H	B	B	B	B	B	B
683	0.056	E	E	E	E	E		H	H	H	H	H	H	B	B	B	B	B	J
823	0.082	E	E	E	E	E		Н	Н	Н	Н	Н	Н	В	В	В	В	В	J
	0.10µF	E	E	E	E	E		Н	Н	Н	Н	Н	Н	B	B	B	В	В	J
124 154	0.12 0.15	E	E	E	E			H H	H H	H H	H H	H H		B	B	B	B	B	J
	0.18	E	E	E	E			H	Н	Н	Н	H		B	B	B	B	B	J
224	0.22	E	E	E	E			Н	Н	Н	Н	Н		В	В	В	В	В	J
274 334	0.27 0.33	E	E	E				H H	H H	H H	H H	H H		B	B	B	B	B	J
	0.33	E	E	с				H	H	H	H	H		B	B	B	B	B	J
474	0.47	E	E					Н	Н	Н	Н	Н		В	B	В	В	B	J
564	0.56							Н	Н	Н	Н	Н		J	J	J	J	J	J
	0.68 0.82							H H	H H	H H	H H	H H		J	J	J	J J	J J	J
105	1.0µF							H	Н	Н	H	H		J	J	J	J	J	J
155	1.5							Н	Н	Н				J	J	J	J	J	
	2.2							Н	Н	Н				J	J	J	J	J	
335 475	3.3 4.7							H H						J	J	J	J J	J	
	6.8													J	J	J			
106	10µF													J	J	J			
The	letter in c	all in av	nropod	+ +	abol of r	roduct t	hicknee	<u>~</u>											

Capacitance & Voltage (X7R 6.3V~100V)

	ectric							-				X	7R	-									
EIA	Size				06	1	1		1	12		1	1		-	18		1	1		-	12	
Code R47	VDCW 0.47 pF	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	50V	100V	16V	25V L	50V	100V
151	0.47 pr 150						В						J								L	L	
181	180						B						J							L	L	L	
201	200	В	В	В	В	В	В						J							L	L	L	
221	220	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	
271	270	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
331	330	В	В	B	В	B	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L		L
391 471	390 470	B	B B	B	B	B	B	J J	J J	J J	J J	J J	J J		L		 	L	L	L	L	L	L
561	560	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
681	680	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
751	750	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
821	820	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
102	1000pF	В	В	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L
122 152	1200 1500	B B	B B	B B	B	B	B	J J	J J	J J	J J	J J	J J		L	L	L	L	L	0	0	0	L
182	1800	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	 	L	L	0	0	0	L
202	2000	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L	0	0	0	L
222	2200	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	0	0	0	L
272	2700	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	0	0	0	L
332	3300	В	В	B	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	0	0	0	L
392	3900 4700	B	B B	B	B	B	B	J	J J	J	J J	J	J J		L		L	L	L	0	0	0	L
472 562	4700 5600	B B	B	B	B	B	B	J J	J	J J	J	J J	J		L	L	 	L	L	0	0	0	L
682	6800	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L	0			L
822	8200	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	-			L
103	0.01µF	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
123	0.012	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
153	0.015	В	В	B	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
183	0.018 0.020	B B	B B	B	B	B	B	J J	J J	J J	J J	J J	J J	L	L	L	 	L	L				L
203 223	0.020	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	 	L	L				L
273	0.022	B	B	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L				L
333	0.033	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
393	0.039	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
473	0.047	В	В	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L				L
563	0.056	В	В	B	B	B	B	J	J	J	J	J	J	L	L	L	L	L	L				L
683 823	0.068	B B	B B	B	B	B	J J		L		 	L	L				L						
	0.002 0.10µF	B	B	B	B	B	J	J	J	J	J	J	J	L	L	L	L		L				
	0.12	B	B	B	B	B	J	J	J	J	J	J	J	L	L	L	L	L	L				L
154	0.15	В	В	В	В	В	J	J	J	J	J	J	J	L	L	L	L	L	L				L
184		В	В	В	В	В	J	J	J	J	J	J	J	L	L	L	L	L	L				L
224		В	В	B	B	B	J	J	J	J	J	J	J	L	L	L	L	L	L				L
274 334		B B	B B	B	B	B	J J	J J	J J	J J	J J	J J	L	L	L	L	 	L	L				L
334 394		U	U	U	D	D	J	J	J	J	J	J	L	L	L	L	 	L	L				L
474	0.33	J	J	J	J	J	L	J	J	J	J	J	L	L	L	L	L	L	L				L
564		J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L	L				L
684		J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L	L				R
824		J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L	L				R
	1.0µF	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L	L				R
125 155		J	J J	J	J J	J J		L	L	L	L	L	L	L	L	L	 	L	L				R R
225		L	L	 	L	L		L	L	L	L	L	L	L	L	L	 	L	L				R
335		L	L	L	L	L		L	L	L	L	L	L	L	L	L	L	L					
475	4.7	L	L	L	L	L		L	L	L	L	L	L	L	L	L	L	L					
685		L	L	L	L	L		L	L	L	L	L											
106		L	L		L	L		L	L	L	L	L											\mid
226		L	L	L	L				L	L	L												\mid
476	41							L	L				l										

Capacitance & Voltage (X5R 4V~50V)

Diel	ectric									Х	5R								
EIA	Size			04	02					06	03					08	05		
Code	VDCW	4V	6.3V	10V	16V	25V	50V	4V	6.3V	10V	16V	25V	50V	4V	6.3V	10V	16V	25V	50V
473	0.047µF						Е												
563	0.056						Е												
683	0.068						Е												
823	0.082						Е												
104	0.10µF	Е	Е	Е	Е	Е	Е												
124	0.12	Е	Е	Е	Е	Е	Е												
154	0.15	Е	Е	Е	Е	Е	Е												
184	0.18	Е	Е	Е	Е	Е	Е												
224	0.22	Е	Е	Е	Е	Е	Е												
334	0.33	Е	Е	Е	Е	Е	Е												
474	0.47	Е	Е	Е	Е	Е	Е	Н	Н	Н	Н	Н	Н						
564	0.56	Е	Е	Е	Е	Е	Е	Н	Н	Н	Н	Н	Н						
684	0.68	Е	Е	Е	Е	Е	Е	Н	Н	Н	Н	Н	Н						
105	1.0µF	F	F	F	F	F	F	Н	Н	Н	Н	Н	Н	J	J	J	J	J	J
155	1.5	F	F	F	F	F		Н	Н	Н	Н	Н	Н	J	J	J	J	J	J
225	2.2	F	F	F	F	F		Н	Н	Н	Н	Н	Н	J	J	J	J	J	J
335	3.3	F	F	F	F			Н	Н	Н	Н	Н		J	J	J	J	J	J
475	4.7	F	F	F	F			Н	Н	Н	Н	Н		J	J	J	J	J	J
685	6.8	F	F	F				Н	Н	Н	Н	Н		J	J	J	J	J	
106	10µF	Ν	Ν	Ν				В	В	В	В	В		J	J	J	J	J	
156	15	Ν	Ν					В	В	В				J	J	J	J	J	
226	22	Ν	Ν					В	В	В				J	J	J	J	J	
476	47							В	В					J	J	J			

Diele	ectric										X	5R									
EIA	Size			12	06					12	10				18	08			18	12	
Code	VDCW	4V	6.3V	10V	16V	25V	50V	4V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	6.3V	10V	16V	25V
104	0.1µF	В																			
155	1.5	В																			
225	2.2	L	L	L	L	L	L														
335	3.3	L	L	L	L	L	L														
475	4.7	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L			0	0
685	6.8	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L			0	0
106	10µF	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	0	0	0	0
126	12	L	L	L	L	L		0	0	0	0	0		L	L	L		0	0	0	
156	15	L	L	L	L	L		0	0	0	0	0		L	L	L		0	0	0	
226	22	L	L	L	L	L		0	0	0	0	0		L	L	L		0	0	0	
336	33	L	L	L	L			0	0	0	0	0		L	L			0	0		
476	47	L	L	L	L			0	0	0	0	0		L	L			0	0		
686	68	L	L					0	0	0	0			L				0			
107	100µF	L	L					0	0	0	0			L				0			
337	330							0	0												

Middle and High Voltage

Capacitance & Voltage (NPO 200V~2KV)

Diel	ectric											NPO										
EIA	Size	06	03		0805			12	06			12	10			18	808			18	12	
Code	VDCW	200V	250V	200V	500V	1000V	200V	500V 630V	1000V	2000V	200V 250V	500V 630V	1000V	2000V	200V 250V	500V 630V	1000V	2000V	200V 250V	500V 630V	1000V	2000V
0R1	0.1pF	Н	Н	250V B	630V B	J	250V B	8 B	Ι	I	2000	6307			2000	6300			2000	6307		
0R5	0.5	Н	Н	В	В	J	В	В	I	I												
0R6	0.6	Н	Н	В	В	J	В	В		I												
0R7	0.7	Н	Н	B	B	J	В	В		1												
	0.8 0.9	H	H H	B	B	J	B	B		1												
1R0	1.0	н	Н	B	B	J	B	B	- · - ·		J	J	J	J								
1R2	1.2	Н	Н	В	В	J	В	В	-	I	J	J	J	J								
	1.5	Н	Н	В	В	J	В	В		I	J	J	J	J								
1R8	1.8	н	Н	В	B	J	В	В			J	J	J	J								
2R0 2R2	2.0 2.2	H	H	B	B	J	B	B		1	J J	J J	J J	J J	L	L	L	L				
	2.2	н	Н	B	B	J	B	B	1	1	J	J	J	J	L	L	L	L				
3R0	3.0	Н	Н	В	В	J	В	В	I	I	J	J	J	J	L	L	L	L	J	J	L	L
	3.3	Н	Н	В	В	J	В	В	-	I	J	J	J	J	L	L	L	L	J	J	L	L
3R9	3.9	Н	Н	В	В	J	В	В	1	1	J	J	J	J	L	L	L	L	J	J	L	L
4R7	4.7	H	H H	B	B	J	B	B			J	J J	J	J J	L	L	L	L	J	J J	L	L
5R0 5R6	5.0 5.6	H	H	B	B	J	B	B		1	J J	J	J J	J	L	L	L	L	J	J	L	L
6R8	6.8	Н	Н	B	B	J	B	B		·	J	J	J	J	L	L	L	L	J	J	L	L
	8.2	Н	Н	В	В	J	В	В	I	I	J	J	J	J	L	L	L	L	J	J	L	L
100	10pF	Н	Н	В	В	J	В	В	- 1	Ι	J	J	J	J	L	L	L	L	J	J	L	L
110	11	Н	Н	B	В	J	В	1			J	J	J	J	L	L	L	L	J	J	L	L
120 150	12 15	H	H	B	B	J	B	1		1	J J	J J	J J	J J	L	L	L	L	J	J J	L	L
180	18	Н	H	B	B	J	B	1	1	1	J	J	J	J	L	L	L	L	J	J	L	L
220	22	Н	Н	В	В	J	В	Ι	Ι	Ι	J	J	J	J	L	L	L	L	J	J	L	L
270	27	Н	Н	В	В	J	В		-	I	J	J	J	J	L	L	L	L	J	J	L	L
300	30	Н	Н	В	В	J	В	1		1	J	J	J	J	L	L	L	L	J	J	L	L
330	33	H H	H	B	B	J	B		- 1		J J	J J	J J	J J	L	L	L	L	J	J J	L	L
390 470	39 47	H	H	B	B	J	B	1		J	J	J	J	J	L	L	L	L	J	J	L	L
560	56	н	н	B	B	J	B			J	J	J	J	J	L	L	L	L	J	J	L	L
680	68	Н	Н	В	В	J	В	-	-	J	J	J	J	J	L	L	L	L	J	J	L	L
820	82	Н	Н	В	В	J	В			L	J	J	J	J	L	L	L	L	J	J	L	L
101	100pF	Н	Н	B	В	J	В			L	J	J	J	J	L	L	L	L	J	J	L	L
121 151	120 150	H H	H H	B	B		B	1	J	L	J J	J J	J J	J J	L	L	L	L	J	J J	L	L
181	180	н	Н	B	B		B	- ·	J	L	J	J	J	J	L	L	L	L	J	J	L	L
221	220	Н	Н	В	В		В	Ι	J	L	J	J	J	J	L	L	L	L	J	J	L	L
271	270	Н	Н	В	В		В		J	L	J	J	J	J	L	L	L	L	J	J	L	L
301	300	H	Н	В	В		В	1	J		J	J	J	L	L	L	L	L	J	J	L	L
	330 390	H	H	B	В		B		J		J	J	J	L	L	L	L	L	J	J	L	L
	470	Н	H	B	J		B	1	J		J	J	J	L	L	L	L	L	J	J	L	L
	560			В	J		В	J	J		J	J	J		L	L	L		J	J	L	L
681	680			В			В	J	J		J	J	J		L	L	L		J	J	L	L
	750			В			В	J	J		J	J			L	L	L	<u> </u>	J	J	L	L
	820			B			B	J	J		J	J	L		L	L	L		J	J	L	L
	1000pF 1200			B J			B	J J	J		J J	J J	L		L	L	L		J	J	L	L
	1500			J			B	J			J	L	-		L	L			J	L	-	
182	1800						В				J	L			L	L			J	L		
	2000						J				J	L			L	L			J	L		
	2200						J				J	L			L	L			J	L		\mid
272 332							J				J J				L	L			J	L		$\left - \right $
	3300										J				L				J	L		\vdash
472															-				J	L		
562	5600																		J			
682																			J			
The	letter in	i cell is	expres	ssed th	ne svm	hol of r	roduct	thickr	229													

Capacitance & Voltage (NPO 3KV~5KV)

		tage (NPO	3KV~5KV)				
	lectric		4000	N	PO		
EIA	Size	200017	1808	E0001/	20001/	1812	50001
Code	VDCW	3000V	4000V	5000V	3000V	4000V	5000V
0R1	0.1pF				-	-	
0R5	0.5						
0R6	0.6						
0R7	0.7						
0R8	0.8						
0R9	0.9						
1R0	1.0						
1R2	1.2						
1R5	1.5						
1R8	1.8						
2R0	2.0	L	L	L			
2R2	2.2	L	 L	L			
2R7	2.2	-					
		L	L	L			
3R0	3.0	L	L	L	L	L	L
3R3	3.3	L	L	L	L	L	L
3R9	3.9	L	L	L	L	L	L
4R7	4.7	L	L	L	L	L	L
5R0	5.0	L	L	L	L	L	L
5R6	5.6	L	L	L	L	L	L
6R8	6.8	L	L	L	L	L	L
8R2	8.2	L	L	L	L	L	L
100	10pF	L	L	L	L	L	L
110	11	L	L	L	L	L	L
120	12	L	L	L	L	L	L
150	15	L	L	L	L	L	L
180	18	L	L	L	L	L	L
	22					L	
220		L	L	L	L		L
270	27	L	L	L	L	L	L
330	33	L	L	L	L	L	L
390	39	L			L	L	L
470	47	L			L	L	L
560	56	L			L	L	L
680	68	L			L	L	L
820	82	L			L	L	
101	100pF	L			L	L	
121	120	L			L	L	
151	150	L			L	L	
181	180	L			L	L	
221	220	L			L	L	
271	270	L			L		
301	300	L			L		
331	330	L			L		
391	390				L		
471	470				L		
561	560				L		
681	680						
751	750						
821	820						
102	1000pF						
122	1200						
152	1500						
182	1800						
182 222	1800 2200						
182 222 272	1800 2200 2700						
182 222 272 332	1800 2200 2700 3300						
182 222 272 332 392	1800 2200 2700 3300 3900						
182 222 272 332 392 472	1800 2200 2700 3300 3900 4700						
182 222 272 332 392	1800 2200 2700 3300 3900						

Capacitance & Voltage (X7R 200V~4KV)

Dist																								
	ectric	0000		05		- 10					4.0		X7R		40						40	40		
EIA	Size	0603 200V	08 200V	05 500V	200V	12 500V			200V	12 500V	10		200V	500V	-	08		1	200V	500V	18			
Code	VDCW	200V 250V	200V 250V	630V	200V 250V	630V	1000V	2000V	200V 250V	630V	1000V	2000V	200V 250V	630V	1000V	2000V	3000V	4000V	200V 250V	630V	1000V	2000V	3000V	4000V
101	100pF		В																					
121	120		В																					
151	150	Н	В	В	В	В	В	J	J	J	J	J			L	L	L	L						
181	180	Н	В	В	В	В	В	J	J	J	J	J			L	L	L	L						
221	220	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L						
	270	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	330	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	390	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	470	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	560	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	680	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
751	750	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	L	L
	820	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	<u> </u>	L
	1000pF	Н	В	В	В	В	В	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	_ <u>L</u>	L
	1100	Н	В	В	В	В	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L		L
122	1200	H	В	В	В	B	J	J	J	J	J	J	L	L	L	L	L	L	L	L	L	L	<u>L</u>	L
152	1500	H H	B	B	В	B	J	J	J J	J J	J J	J	L	L	L	L	L	L	L		L		<u> </u>	
182 222	1800 2200	H	B	B	B	B	J	J	J	J	J	J	L		L		L	L	L		L	L	 L	L
	2200	H	B	B	B	B	J	J J		J	J	J	L	 	L	L	L	L	L	 	L	L		L
332	3300	H	B	B	B	J	J	J		J	J	J	L 		L				L	 	L			L
392	3900	H	B	B	B	J	J		J	J	J	L	L	L	L	L	L		L	L	L	L	L	
	4700	H	B	B	B	J	J		J	J	L	L	L	L	L	L	L		L	L	L	L	L	
	5600	H	B	B	B	J	J		J	J	L	L	L	L	L	L	-		L	L	L	L	<u> </u>	
	6800	H	B	J	B	J	J		J	J	L	L	L	L	L	L			L	L	L	L		
	8200	H	B	J	B	J	J		J	J	L	L	L	L	L	L			L	L	L	L		
	0.010µF	H	B	J	B	J	Ĵ		J	Ĵ	L	L	L	L	L	L			L	L	L	L		
	0.012		B	-	В	J	J		J	J	L		L	L	L				L	L	L	L		
	0.015		В		В	J			J	J	L		L	L	L				L	L	L			
	0.018		В		В	J			J	J	L		L	L	L				L	L	L			
203	0.020		J		В	J			J	J	L		L	L	L				L	L	L			
	0.022		J		В	J			J	J	L		L	L	L				L	L	L			
273	0.027				В	J			J	J			L	L					L	L	L			
333	0.033				J	J			J	J			L	L					L	L	L			
393	0.039				J				J	J			Г	L					L	L	L			
	0.047				J				J	J			L	L					L	L	L			
	0.056				J				J	J			L	L					L	L	R			
	0.068				J				J	L			L	L					L	L				
	0.082				J				J	L			L						L	L				
	0.10µF				J				J	L			L						L	L				
	0.12				J				J				L						L	R				
	0.15				J				J				L						L	R				
	0.18				L				L				L						L	R				
	0.22				L				L				L						L	R				
	0.27																		_					
	0.33																		R					
	0.39																		R					\square
	0.47																		R					\square
	0.56																		R					\square
105	1.0µF																		R					<u> </u>

Ultra-small 01005 & 0201 Capacitors

Canac	itance & V	/oltage																
	electric	Julage	N	PO		D	ielectric		X	7R					X5R			
EIA	Size	01	005		01	EIA	Size	01005		0201		01	005			0201		
Code	VDCW	10V	16V	25V	50V	Code		10V	10V	25V	50V	4V	10V	4V	10V	16V	25V	50V
0R1	0.1pF	V	25V V	C	C	101	100pF	16V V	16V C	C	C	6.3V V	16V V	6.3V				
0R1	0.10	V	V	C	C	121	120	V	C	C	C	V	V					
0R3	0.3	v	v	C	C	151	150	v	C	C	C	v	V					
0R4	0.4	V	V	С	С	181	180	V	С	С	С	V	V					
0R5	0.5	V	V	С	С	201	200	V	С	С	С	V	V					
0R6	0.6	V	V	С	С	221	220	V	C	С	C	V	V					
0R7 0R8	0.7 0.8	V V	V V	C C	C C	271 331	270 330	V	C C	C C	C C	V V	V V					┟───┦
0R8	0.8	V	V	C	C	331	390	V	C	C	C	V	V					
1R0	1.0	v	v	c	c	471	470	v	C	c	C	v	V					
1R1	1.1	V	V	C	C	561	560	V	C	C	C	V	V					
1R2	1.2	V	V	С	С	681	680	V	С	С	С	V	V					
1R3	1.3	V	V	С	С	821	820	V	С	С	С	V	V					
1R4	1.4	V	V	C	C	102	1000pF	V	C	С	С	V	V					
1R5	1.5	V V	V V	C C	C C	122 152	1200 1500		C C	C C		V V	V V					
1R6 1R7	1.6 1.7	V	V	C	C	152	1800		C	C		V	V					┝──┦
1R8	1.8	V	V	C	C	222	2200	1	C	C		V	V	<u> </u>			<u> </u>	┝──┤
2R0	2.0	V	V	C	C	272	2700		C	C		V	V		1	1		
2R2	2.2	V	V	С	С	332	3300		С	С		V	V					
2R4	2.4	V	V	С	С	392	3900		С	С		V	V					
2R5	2.5	V	V	С	C	472	4700	<u> </u>	С	С	L	V	V	L	<u> </u>	<u> </u>	<u> </u>	C
2R7	2.7	V V	V V	C	C	562	5600		C	C		V V	V V		-			C
3R0 3R3	3.0 3.3	V	V	C C	C C	682 822	6800 8200		C C	C C		V	V					C C
3R6	3.6	V	V	c	c	103	0.010µF		C	C		V	V					C
3R7	3.7	V	V	C	C	123	0.012					V	V					
3R9	3.9	V	V	С	С	153	0.015		С			V	V	С	С	С	С	
4R0	4.0	V	V	С	С	183	0.018		С			V	V	С	С	С	С	
4R3	4.3	V	V	С	С	203	0.020					V	V		_	_	_	
4R7	4.7	V V	V V	C C	C	223	0.022		С			V V	V V	C C	C	C C	C C	
5R0 5R1	5.0 5.1	V	V	C	C C	273 333	0.027					V	V	C	C C	C	C	┟───┦
5R6	5.6	v	v	c	c	393	0.039					v	V	c	c	c	c	
6R0	6.0	V	V	C	C	473	0.047					V	V	Ċ	C	Č	C	
6R2	6.2	V	V	С	С	563	0.056					V	V	С	С	С	С	
6R5	6.5	V	V	С	С	683	0.068					V	V	С	С	С	С	
6R8	6.8	V	V	C	C	823	0.082					V	V	C	C	C	C	ļ
7R0 7R5	7.0 7.5	V V	V V	C C	C C	104 124	0.100µF 0.120					V	V	C C	C C	C C	С	┝───┦
8R0	8.0	V	V	C	C	154								C	C	C		
8R2	8.2	v	v	C	C	224	0.220							D	D	D		
9R0	9.0	V	V	С	C	334	0.330							D	D			
9R1	9.1	V	V	С	С	474	0.470							D	D			
	9.5	V	V	С	С	684								D	D			
100	10pF	V	V	C	C		1.0µF							D	D			\square
110 120	11 12	V V		C C	C C	225	2.2	<u> </u>		L		L	I	D	D	1	L	
120	12	V		C C	C													
140	14	V		C	C													
150	15	V		C	C													
160	16	V		С	С													
180	18	V		С	С													
200	20	V		C	C													
220 240	22 24	V		C C	C C													
240	24	<u> </u>		C	C													
300	30			C	C													
330	33			С	С													
360	36			С	С													
390	39			С	С													
430	43			C	C													
470 510	47 51			C C	C C													
510	51			C	C													
620	62			C	C													
680	68	1		C	C													
750	75			С	С													
820	82			С	С													

The letter in cell is expressed the symbol of product thickness

С

С

С

С

С

101 100pF

221

102

220

1000pF

Environmental Characteristics

Item				Requi	rement				Т	est Method		
				-					NPO: (Class I)			
									Cap≤ 1000pF 1.0±	0.2Vrms. 1MH	z±10%	
									Cap>1000pF 1.0±0			
									X7R, X5R: (Class I		1076	
Capacitance	Should be w	hithin the s	pecified to	lerance					Test Temperature:2			
									Cap≤ 10uF 1.0±0.2		09/	
									-			
		1							Cap>10uF 0.5±0.1		4 Hz	
(DF, tanδ)	NPO								Test Temperature:2			
Dissipation	(Class I)	≤0.25%							Test Frequency: 1.0	0±0.2Vrms, 1M	Hz±10%	
Factor	X7R, X5R:								Test Temperature:2	25°C +3 °C		
(For 01005	(Class II)	≤10%							Test Frequency: 1.0		Hz+10%	
Size)	(01233 11)								root roquonoy	n	1	
					DF				Capacitance	Measuring Frequency	Measuring Voltage	
						,				Trequency	voltage	
					≤0.56%	Ó		Cr < 5 pF				
	NPO			1.5	[(150/Cr)+	71×10 ⁻⁴		5pF≤Cr<50 pF	1MHZ±10%			
	(Class I)					-		op. e. lee p.		1.0±0.2Vrms		
		≤0.15%							50pF≤Cr≤1000 pF			
					≤0.15%	<u>/</u>						
		Voltage	DF	0201	0402	0603	0805	≧1206				
		vollage				<u>0603</u> ≤100		≤1200 ≤680				
			≤250	≤3.3nF	≤10nF	nF	≤330 nF	nF				
		50V	≤350	≤10nF	-	-	-	≤1µF				
			≤500	-	-	-	≤680 nF	-				
			≤1000	-	≤1µF	≤2.2µF	≤4.7µF	≤10µF ≤680				
			≤250	≤3.3nF	≤10nF	≤150nF	≤330nF	_≤680 nF				
(DF, tanδ)		251/	≤350	≤10nF	≤100nF	≤330nF	-	≤2.2µF				
Dissipation		25V	≤500	-	-	-	≤1µF	-				
Factor			≤750	-	-	-	≤2.2µF	≤4.7µF				
(For 0402-			≤1000	≤100nF	≤2.2µF	≤10µF	≤22µF	≤22µF ≤680				
			≤250	≤3.3nF	≤10nF	≤150nF	≤330nF	_≤680 nF				
1812 Sizes)		401/	≤350	≤15nF	≤100nF	≤330nF	-	≤2.2µF				
	X7R, X5R:	16V	≤500	≤47nF	≤220nF	≤680nF	≤2.2µF	-	Cap≤ 10uF 1.0±0.2Vr	ms, 1KHz±10%		
	(Class II)		≤750	-	-	-	≤4.7µF	≤4.7µF	Cap>10uF 0.5±0.1Vrn	ns, 120Hz±24Hz		
			≤1000	≤100nF	≤4.7µF	≤10µF	≤22µF	≤47μF ≤680				
			≤250	≤3.3 nF	≤10nF	≤150nF	≤330nF	_≤000 nF				
		401/	≤350	≤15nF	≤100nF	≤330nF	-	≤2.2µF				
		10V	≤500	≤47nF	-	≤680nF	≤2.2µF	-				
			≤750	-	≤1µF	≤2.2µF	≤4.7µF	≤10µF				
			≤1000 ≤250	≤2.2µF	≤10µF	≤22µF	≤47µF	≤100µF)nF			
			≤250 ≤350	≤3.3nF ≤15nF	- ≤100nF	≤150nF ≤330nF	-	≤680nF ≤2.2µF				
			<u>≤500</u>	≤47nF	≤220nF	≤680nF	-	- <u>-</u> 2.2µ1				
		60.01/	≤750	-	0 ≤1µF	-	10µF~22µF	≤10µF	1			
		≤6.3∨										
			≤1000	≤4.7µF	≤22µF	≤47µF	≤47µF	≤100µF				
	I				l							

[MCF Series]

Multilayer Ceramic Chip Capacitor

	Requirement or damage. the terminal electrode is covered by ace: No visible damage.	new solder.	Class I : Class II : Duration Charge/ (This me	Test Method ng Voltage: 300% Rated voltage 250% Rated voltage : 1 ~ 5s Discharge Current: 50m/		
At least 95% of t	he terminal electrode is covered by	new solder.	Class I : Class II : Duration Charge/ (This me	300% Rated voltage 250% Rated voltage : 1 ~ 5s		
		new solder.	Preheati	thod excludes high-volta	A max. ge MLCC)	
				ng conditions:80 to 120°(emperature: Solder (Sn/Pb:63/37) 245±5°		
0201~1812 Size Appearance: No ΔC/C: ≤±10%			Warp: 1r Speed: 1 Unit: mm The mea	l mm/sec.	le with the	
01005 Size: Appearance: No	visible damage		Test Board: Al2O3 or PCB Warp: 1mm Speed: 0.5 mm/sec. Unit: mm The measurement should be made with the board in the bending position. 20 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			
NPO (Class I)	C≤10 nF, Ri≥50000MΩ C > 10 nF, Ri• C _R ≥500S		Measurir	ng Voltage: Rated Voltag	e(Max 500V)	
X7R, X5R: (Class II)	C≤25 nF, Ri≥10000MΩ C > 25 nF, Ri• C _R > 100S		Test Hur Test Ter	nidity: ≤75% nperature: 25℃±3℃		
· · ·	NPO	X7R / X5R	Test Cur	rent: ≤50mA		
ltem ΔC/C	≤±0.5% or ±0.5pF whichever is larger	-5~+10%		ng conditions: 100 to 200 emperature: 265±5°C)℃; 10 ±2 min.	
DF	Same to initial value		Clean th	e capacitor with solvent a	and examine	
IR	Same to initial value			10X(min.) microscope. y Time: 24±2h		
	o visible damage. he terminal electrode is covered by	new solder.		y condition: Room tempe	rature	
No visible dama	ge		Applied Duration	Force: 5N : 10±1S		
			tempera Recover Initial Me Cycling Step 1 2 3 4	y time: 24±1h easurement Times: 5 times, 1 cycle, 4 Temp.(°C) Low- category temp NPO/X7R/X5R : -55 Normal temp. (+20) Up- category temp NPO/X7R/ : +125 X5R: +85 Normal temp. (+20)		
		O: ΔC/C:≤±1% or ±1pF, whichever is larger. R/X5R: ΔC/C: ≤±10%		D: $\Delta C/C:\leq \pm 1\%$ or $\pm 1pF$, whichever is larger. $R/X5R: \Delta C/C: \leq \pm 10\%$	D: ΔC/C:≤±1% or ±1pF, whichever is larger. R/X5R: ΔC/C: ≤±10% Initial Méasurement Cycling Times: 5 times, 1 cycle, 4 Step Temp.(°C) 1 Low- category temp NPO/X7R/X5R : -55 2 Normal temp. (+20) Up- category temp 3 NPO/X7R/ : +125 X5R: +85	

[MCF Series]

Multilayer Ceramic Chip Capacitor

Item	Requirement	Test Method
Humidity Load	NPO: ΔC/C :±7.5% or ±0.75pF, whichever is larger. X7R/X5R: ΔC/C: ≤±12.5% DF: Not more than twice of initial value. IR: NPO: Ri≥5000MΩ或 Ri• CR≥ 50S whichever is smaller X7R/X5R: Ri≥1000MΩ或 Ri• CR≥10S whichever is smaller. Appearance: No visible damage	Temperature : 40±2°C Humidity : 90~95%RH Voltage: Rated Voltage Duration : 500h Recovery conditions : Room temperature Recovery Time : 24h (Class1) or 48h (Class2)
Life Test	NPO: ΔC/C :≤±2% or ±1pF,whichever is larger. X7R/X5R ΔC/C ≤±20% DF: Not more than twice of initial value. IR: NPO: Ri≥4000MΩ或 Ri• CR≥40S whichever is smaller X7R/X5R: Ri≥2000MΩ或 Ri• CR≥50S whichever is smaller. Visual Appearance: No visible damage	Low-Voltage (≤100V)Applied Voltage: 2*Ur, except the table 1Duration: 1000hTemperature : 125°C (NPO, X7R) 85°C (X5R)Charge/ Discharge Current: 50mA max.Recovery Conditions: Room TemperatureRecovery Conditions: Room TemperatureRecovery Time: 24h (Class 1), or 48h (Class2)Table 1CapacitaCapacitaTestNote0201≥0805≥47nF1uF0402≥1.5Ur1206≥1210≥470nF10uF
Middle &high voltage Life Test	NPO: ΔC/C :≤±2% or ±1pF,whichever is larger. X7R/X5R ΔC/C ≤±20% DF: Not more than twice of initial value. IR: NPO: Ri≥4000MΩ或 Ri• CR≥40S whichever is smaller X7R/X5R: Ri≥2000MΩ或 Ri• CR≥50S whichever is smaller. Visual Appearance: No visible damage	Applied Voltage: 100V≤Rated Voltage≦ 200V : 1.5 Multiple 200V <rated 1.3="" :="" multiple<br="" voltage≤500v="">500V< Rated Voltage : 1.2 Multiple Duration: 1000h Charge/ Discharge Current: 50mA max. Temperature : 125°C (NPO X7R) ; 85°C (X5R) Recovery Conditions: Room Temperature Recovery Time: 24h (Class 1), or 48h (Class2)</rated>

Pretreatment (only for class 2 capacitor) is a method to treat the capacitor before measurement. First, place the capacitor in the up-category temperature or other specified higher temperature environment for 1 hour. Then recovery the capacitor at standard pressure conditions for 24±1 hours.

Storage Temperature: 5 ~ 40°C; Relative Humidity 20 ~70 %RH

Packaging

Packaging Quantity

Туре	Dielectric	Voltage	Capacitance	Thickness /	Symbol		g (7" Reel)	Packaging	j (13" Reel)
туре	Dielectric	voltage	Capacitance	THICKNESS /	Symbol	Paper tape	Plastic tape	Paper tape	Plastic tape
01005	NPO	10V	0R1-220	0.20±0.02	V	20K	-	-	-
01005	NFO	16V / 25V	0R1-100	0.20±0.02	V	20K	-	-	-
0201	NPO	25V	0R1-102	0.30±0.03	С	15K	-	70K	-
0201	NPO	50V	0R1-221	0.30±0.03	С	15K	-	70K	-
		6.3V	332-472	0.50±0.05	E	10K	-	50K	-
		10V / 16V	122-272	0.50±0.05	E	10K	-	50K	-
0402	NPO	25V	0R1-122	0.50±0.05	E	10K	-	50K	-
		50V	0R1-102	0.50±0.05	Е	10K	-	50K	-
		100V	0R1-101	0.50±0.05	E	10K	-	50K	-
		10V	123-223	0.80±0.10	Н	4K	-	15K	-
		16V	822-103	0.80±0.10	Н	4K	-	15K	-
0603	NPO	25V / 50V	0R1-682	0.80±0.10	Н	4K	-	15K	-
		100V	0R1-102	0.80±0.10	Н	4K	-	15K	-
		200V / 250V	0R1-471	0.80±0.10	Н	4K	-	15K	-
		10V	103-104	1.25±0.20	J	-	2K	-	-
		16V	103-333	1.25±0.20	J	-	2K	-	-
		25V	103-273	1.25±0.20	J	-	2K	-	-
			0R1-822	0.80±0.20	B	4K	-	15K	-
		50V	103-223	1.25±0.20	J	-	2K	-	-
0805	NPO	100V	0R1-332	0.80±0.20	B	4K	-	15K	-
0005			0R1-102	0.80±0.20	B	4K	-	15K	-
		200V / 250V	122-152	1.25±0.20	J	-	2K	-	-
			0R1-331	0.80±0.20	B	4K	21	15K	-
		500V / 630V	471-561	1.25±0.20	J	-	2K	- 15K	-
		1KV				-		-	-
		INV	0R1-101	1.25±0.20 0.80±0.20	J		2K		-
		50V	0R3-822		B	4K	-	15K	-
		4001/	103-104	1.60±0.30	L	-	2K	-	-
		100V	0R1-332	0.80±0.20	В	4K	-	15K	-
		200V / 250V	0R1-182	0.80±0.20	В	4K	-	15K	-
			202-272	1.25±0.20	J	-	3K	-	-
			0R1-100	0.80±0.20	В	4K	-	15K	-
1206	NPO	500V / 630V	110-471	1.00±0.20		-	3K	-	-
			561-152	1.25±0.20	J	-	3K	-	-
		1KV	0R1-121	1.00±0.20		-	3K	-	-
			151-102	1.25±0.20	J	-	3K	-	-
			0R1-390	1.00±0.20		-	3K	-	-
		2KV	470-680	1.25±0.20	J	-	3K	-	-
			820-271	1.60±0.30	L	-	2K	-	-
		50V	100-104	1.25±0.20	J	-	2K	-	8K
		100V	1R0-682	1.25±0.20	J	-	2K	-	8K
		200V / 250V	1R0-332	1.25±0.20	J	-	2K	-	8K
		E00\// C20\/	1R0-122	1.25±0.20	J	-	2K	-	8K
1210	NPO	500V / 630V	152-222	1.60±0.30	L	-	2K	-	8K
			1R0-681	1.25±0.20	J	-	2K	-	8K
		1KV	821-122	1.60±0.30	L	-	2K	-	8K
			1R0-271	1.25±0.20	J	-	2K	-	8K
		2KV	301-471	1.60±0.30	L		2K 2K	_	8K
		50V	100-104	1.60 ± 0.30 1.60±0.30	 	-	2K 2K		
		100V	2R0-472	1.60±0.30		-	2K 2K	-	-
		200V / 250V	2R0-472 2R0-392	1.60±0.30 1.60±0.30		-	2K 2K	-	-
		200V / 250V 500V / 630V			L		2K 2K	-	-
1000			2R0-272	1.60±0.30	L		2K 2K		-
1808	NPO	1KV	2R0-102	1.60±0.30		-		-	
		2KV	2R0-471	1.60±0.30	L	-	2K	-	-
		3KV	2R0-331	1.60±0.30	L		2K	-	-
		4KV	2R0-330	1.60±0.30	L	-	2K	-	-
		5KV	2R0-330	1.60±0.30	L	-	2K	-	-
		50V	100-104	1.25±0.20	J	-	1K		-
		100V	3R0-103	1.25±0.20	J	-	1K	-	-
		200V / 250V	3R0-682	1.25±0.20	J	-	1K	-	-
			3R0-102	1.25±0.20	J	-	1K	-	-
1015		500V / 630V	122-472	1.60±0.30	L	_	1K	-	-
1812	NPO	1KV				1			
			3R0-122	1.60±0.30		-	1K	-	-
		2KV	3R0-102	1.60±0.30	L	-	1K	-	-
		3KV	3R0-561	1.60±0.30	L	-	1K	-	-
			200.004	1 60 . 0 00	1		41/		
		4KV 5KV	3R0-221 3R0-680	1.60±0.30 1.60±0.30	L	-	1K 1K		-

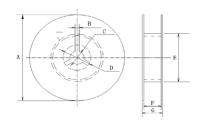
Packaging Quantity

Туре	Dielectric	Voltage	Capacitance	Thickness / S	Symbol		g (7" Reel)	Packaging	
			-		-	Paper tape	Plastic tape	Paper tape	Plastic tap
01005	X7R	10V / 16V	101-102	0.20±0.02	V	20K	-	-	-
0201	X7R	10V / 16V	101-223	0.30±0.03	С	15K	-	70K	-
		25V	101-103	0.30±0.03	С	15K	-	70K	-
		50V	101-102	0.30±0.03	С	15K	-	70K	-
		6.3V / 10V	101-474	0.50±0.05	E	10K	-	50K	-
0402	X7R	16V / 25V	101-224	0.50±0.05	E	10K	-	50K	-
0402		50V	101-104	0.50±0.05	E	10K	-	50K	-
		100V	151-472	0.50±0.05	E	10K	-	50K	-
		6.3V	151-475	0.80±0.10	Н	4K	-	15K	-
		10V / 16V	151-225	0.80±0.10	Н	4K	-	15K	-
0603	X7R	25V / 50V	151-105	0.80±0.10	Н	4K	-	15K	-
		100V	101-104	0.80±0.10	Н	4K	-	15K	-
		200V / 250V	151-103	0.80±0.10	н	4K	_	15K	-
		6.3V / 10V /	151-474	0.80±0.20	В	4K	-	15K	-
		16V	564-106	1.25±0.20	J	-	2K	-	-
			151-474	0.80±0.20	B	4K	-	15K	-
		25V	564-475	1.25±0.20	J	-	2K	-	-
			151-474	0.80±0.20	В	4K	-	15K	-
		50V	564-225	1.25±0.20	J	-	2K	-	-
0805	X7R		475	1.25±0.20	J	-	2K	-	-
			101-563	0.80±0.20	В	4K	-	15K	-
		100V	683-105	1.25±0.20	J	-	2K	-	-
			101-183	0.80±0.20	В	4K	-	15K	-
		200V / 250V	203-223	1.25±0.20	J	-	2K	-	-
			151-562	0.80±0.20	В	4K	-	15K	-
		500V / 630V	682-103	1.25±0.20	J	-	2K	-	-
			201-334	0.80±0.20	B	4K	-	15K	-
		6.3V / 10V /	474-155	1.25±0.20	J	-	ЗK	_	-
		16V / 25V	225-226	1.60±0.30	L	-	2K	-	_
			201-334	0.80±0.20	B	4K	-	15K	-
			474-824	1.25±0.20	J	-	ЗК	-	-
		50V	105	1.25±0.20	J	4K	-	-	_
		500	125-155	1.25±0.20	J	-	3K	-	-
			225-106	1.60±0.30	L	-	2K	_	
			151-563	0.80±0.20	B	- 4K	-	- 15K	-
1206	X7R	100V	683-334	0.80±0.20 1.25±0.20	J	4N -		-	-
1200		1000	474-105	1.25±0.20 1.60±0.30		-	2K	-	-
					L B	- 4K	2N -	- 15K	-
		200V / 250V	151-273 333-154	0.80±0.20 1.25±0.20	1	4n	- 3K	IJK	-
		2000/2500	184-224		L	-	2K	-	-
			151-272	1.60±0.30 0.80±0.20	B	- 4K	21	15K	
		500V / 630V	332-333	1.25±0.20	J	-	3K	-	-
			151-102	0.80±0.20	B	4K	51	15K	-
		1KV	112-123	1.25±0.20	J	-	3K	-	
		2KV	151-272	1.25±0.20	J	-	3K 3K	_	-
			221-474	1.25±0.20	J	-	2K	-	-
		6.3V / 10V	564-476	1.60±0.30	L	-	2K	-	-
			221-474	1.25±0.20	J	-	2K	-	-
		16V / 25V	564-226	1.60±0.30	L	-	2K	-	-
			221-474	1.25±0.20	J	-	2K	-	-
		50V	564-106	1.60±0.30	L	-	2K	-	-
			151-224	1.25±0.20	J	-	2K	-	-
		100V	334-475	1.60±0.30	L	-	2K	-	-
1210	X7R		151-154	1.25±0.20	J	-	2K 2K	-	-
		200V / 250V	184-224	1.60±0.30	L	-	2K	-	-
			151-563	1.25±0.20	J	-	2K	-	-
		500V / 630V	683-104	1.60±0.30	L	-	2K	-	-
			151-392	1.25±0.20	J	-	2K	-	-
		1KV	472-223	1.60±0.30	L	-	2K 2K	-	-
			151-272	1.25±0.20	J	-	2K	-	-
		2KV	332-103	1.60±0.30	L		2K 2K		-

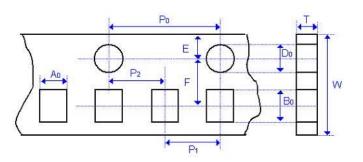
[MCF Series]

Multilayer Ceramic Chip Capacitor

Packaging	Quantity

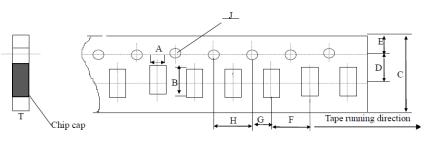

Туре	Dielectric	Voltage	Capacitance	Thickness /	Symbol		g (7" Reel)		(13" Reel)
турс	Diciccine	_	Oapachance	Thekness /	oymbol	Paper tape	Plastic tape	Paper tape	Plastic tape
		6.3V / 10V / 16V / 25V / 50V	221-475	1.60±0.30	L	-	2K	-	-
		100V	221-225	1.60±0.30	L	-	2K	-	-
		200V / 250V	221-224	1.60±0.30	L	-	2K	-	-
1808	X7R	500V / 630V	221-683	1.60±0.30	L	-	2K	-	-
		1KV	151-223	1.60±0.30	L	-	2K	-	-
		2KV	151-103	1.60±0.30	L	-	2K	-	-
		3KV	151-472	1.60±0.30	L	-	2K	-	-
		4KV	151-222	1.60±0.30	L	-	2K	-	-
		16V	R47-102	1.60±0.30	L	-	1K	-	-
		100	122-682	2.5	0	-	0.5K	-	-
		25V / 50V	R47-102	1.60±0.30	L	-	1K	-	-
		2307300	122-472	2.5	0	-	0.5K	-	-
		100V	271-564	1.60±0.30	L	-	1K	-	-
		100 V	684-225	2	R	-	0.5K	-	-
		2001//2501/	271-224	1.60±0.30	L	-	1K	-	-
1812	X7R	200V / 250V	334-105	2	R	-	0.5K	-	-
		E00\// 620\/	271-104	1.60±0.30	L	-	1K	-	-
		500V / 630V	124-224	2	R	-	0.5K	-	-
		417	271-473	1.60±0.30	L	-	1K	-	-
		1K	563	2	R	-	0.5K	-	-
		2K	271-123	1.60±0.30	L	-	1K	-	-
		3K	271-472	1.60±0.30	L	-	1K	-	-
		4K	271-332	1.60±0.30	L	-	1K	-	-
01005	X5R	4V / 6.3V / 10V / 16V	101-104	0.20±0.02	V	20K	-	-	-
			153-154	0.30±0.03	С	15K	-	70K	-
		4V / 6.3V / 10V	224-225	0.30±0.05	D	15K	-	70K	-
			153-154	0.30±0.03	C	15K	_	70K	-
0201	X5R	16V	224	0.30±0.05	D	15K	-	70K	-
		25V	153-104	0.30±0.03	C	15K	-	70K	-
		50V	472-103	0.30±0.03	c			70K	-
		507				15K	-	50K	-
		4) (/ A A) (104-684	0.50±0.05	E	10K	-		
		4V / 6.3V	105-685	0.50±0.15	F	10K	-	50K	-
			106-226	0.50±0.20	N	10K	-	50K	-
			104-684	0.50±0.05	E	10K	-	50K	-
		10V	105-685	0.50±0.15	F	10K	-	50K	-
0402	X5R		106	0.50±0.20	N	10K	-	50K	-
0102	Xort	16V	104-684	0.50±0.05	E	10K	-	50K	-
		100	105-475	0.50±0.15	F	10K	-	50K	-
		25\/	104-684	0.50±0.05	E	10K	-	50K	-
		25V	105-225	0.50±0.15	F	10K	-	50K	-
		501/	473-684	0.50±0.05	E	10K	-	50K	-
		50V	105	0.50±0.15	F	10K	-	50K	-
			474-685	0.80±0.10	H	4K	-	15K	-
		4V / 6.3V	106-476	0.80±0.20	В	4K	-	15K	-
			474-685	0.80±0.10	H	4K	-	15K	-
0603	X5R	10V	106-226	0.80±0.20	В	4K	-	15K	-
0000	7.01		474-685	0.80±0.20	H	4K 4K	-	15K	-
		16V / 25V	106	0.80±0.10	B	4K 4K	-	15K	-
		E0\/				-		15K	
		50V	474-225	0.80±0.10	Н	4K	-		-
0005	VED	4V / 6.3V / 10V	105-476	1.25±0.20	J	-	2K	-	-
0805	X5R	16V / 25V	105-226	1.25±0.20	J	-	2K	-	-
		50V	105-475	1.25±0.20	J	-	2K	-	-
		4V	104-155	0.80±0.20	В	4K	-	15K	-
		- T V	225-107	1.60±0.30	L	-	2K	-	-
1206	X5R	6.3V	225-107	1.60±0.30	L	-	2K	-	-
1200	7.51	10V / 16V	225-476	1.60±0.30	L	-	2K	-	-
		25V	225-226	1.60±0.30	L	-	2K	-	-
	1	50V	225-106	1.60±0.30	L	-	2K	-	-

Packaging Quantity


Turne	Dielectric	Valtara	Canaaitanaa	Thickness /	Sumbal	Packaging	g (7" Reel)	Packaging	(13" Reel)
Туре	Dielectric	Voltage	Capacitance	Thickness /	Symbol	Paper tape	Plastic tape	Paper tape	Plastic tape
		4V / 6.3V	475-106	1.60±0.30	L	-	2K	-	-
		40/0.30	126-337	2.50	0	-	1K	-	-
		10V / 16V	475-106	1.60±0.30	L	-	2K	-	-
1210	X5R	1007100	126-107	2.50	0	-	1K	-	-
		25V	475-106	1.60±0.30	L	-	2K	-	-
		237	126-476	2.50	0	-	1K	-	-
		50V	475-106	1.60±0.30	L	-	2K	-	-
		6.3V	475-107	1.60±0.30	L	-	2K	-	-
1808	X5R	10V	475-476	1.60±0.30	L	-	2K	-	-
1000	ADK	16V	475-226	1.60±0.30	L	-	2K	-	-
		25V	475-106	1.60±0.30	L	-	2K	-	-
		6.3V	106-107	2.50	0	-	0.5K	-	-
1812	X5R	10V	106-476	2.50	0	-	0.5K	-	-
1012	ADK	16V	475-226	2.50	0	-	0.5K	-	-
		25V	475-106	2.50	0	-	0.5K	-	-

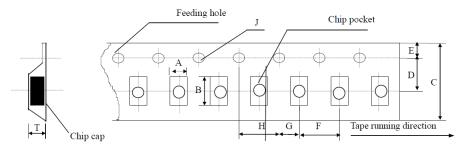
Tape and Reel

			Unit: mm
Туре	01005 / 0201 / 0402 / 06	1808 / 1812	
Reel Size	7"	13"	7"
A	178±2.0	330±2.0	178±2.0
В	3.0	3.0	3.0
С	13.0±0.5	13.0±0.5	13.0±0.5
D	21.0±0.8	21.0±0.8	21.0±0.8
E	50 or more	50 or more	50 or more
F	10.0±1.5	10.0±1.5	10.0±1.5
G	12 max	12 max	12 max


Paper Tape Size Specification

Туре	A0	B0	Т	w	P0	P1	P2	D0	E	F
01005	0.24±0.20	0.45±0.02	0.30 Below	8.00±0.10	4.00±0.10	2.00±0.05	2.00±0.05	1.5-0/+0.10	1.75±0.10	3.50±0.05
0201	0.37±0.10	0.67±0.10	0.80 Below	8.00±0.10	4.00±0.10	2.00±0.05	2.00±0.05	1.5-0/+0.10	1.75±0.10	3.50±0.05
0402	0.65±0.10	1.15±0.10	0.80 Below	8.00±0.10	4.00±0.10	2.00±0.05	2.00±0.05	1.5-0/+0.10	1.75±0.10	3.50±0.05

Unit: mm



Unit: mm

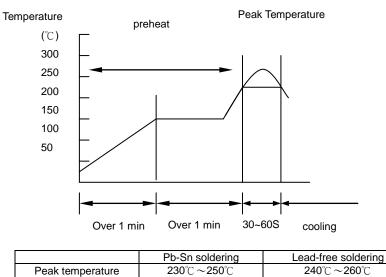
Туре	Α	В	С	D	E	F	G	Н	J	Т
0603	1.10±0.10	1.90±0.10	8.00±0.10	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.10	4.00±0.10	1.5-0/+0.10	1.10 Max
0805	1.45±0.15	2.30±0.15	8.00±0.15	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.10	4.00±0.10	1.5-0/+0.10	1.10 Max
1206	1.80±0.20	3.40±0.20	8.00±0.20	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.10	4.00±0.10	1.5-0/+0.10	1.10 Max

Plastic Tape Size Specification

Unit: mm

Туре	Α	В	С	D	E	F	G	Н	J	Т
0805	1.55±0.20	2.35±0.20	8.00±0.20	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.10	4.00±0.10	1.50-0/+0.10	1.50 Max
1206	1.95±0.20	3.60±0.20	8.00±0.20	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.10	4.00±0.10	1.50-0/+0.10	1.85 Max
1210	2.70±0.10	3.42±0.10	8.00±0.10	3.50±0.05	1.75±0.10	4.00±0.10	2.00±0.05	4.00±0.10	1.55-0/+0.10	3.20 Max
1808	2.20±0.10	4.95±0.10	12.00±0.10	5.50±0.05	1.75±0.10	4.00±0.10	2.00±0.05	4.00±0.10	1.50-0/+0.10	3.00 Max
1812	3.66±0.10	4.95±0.10	12.00±0.10	5.50±0.05	1.75±0.10	8.00±0.10	2.00±0.05	4.00±0.10	1.55-0/+0.10	4.00 Max

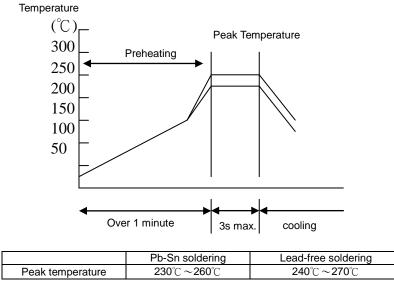
Recommended Soldering Method


Туре	Dielectric	Capacitance	Soldering Method	
01005	NPO/ X7R/X5R	/	R	
	NPO	/	R	
0201	X7R/X5R	/	R	
	Y5V	/	R	
	NPO	/	R	
0402	X7R/X5R	/	R	
	Y5V	/	R	
	NPO	/	R/W	
		C≥1uF	R	
0603	X7R/X5R	C<1uF	R/W	
	Y5V	C≥1uF	R	
	TOV	C<1uF	R/W	
	NPO	/	R/W	
		C≥4.7uF	R	
0805	X7R/X5R	C<4.7uF	R/W	
		C≥1uF	R	
	Y5V	C<1uF	R/W	
	NPO	/	R/W	
		C≥10uF	R	
1206	X7R/X5R	C<10uF	R/W	
Γ		C≥10uF	R	
	Y5V	C<10uF	R/W	
	NPO	/	R	
≥1210	X7R/X5R	/	R	
F	Y5V	/	R	

Soldering method : R - Reflow Soldering

W - Wave Soldering

The temperature profile for soldering


Re-flow soldering

While in preheating, please keep the temperature difference between soldering temperature and surface temperature of chips as: T≤150°C.

Wave soldering

While in preheating, please keep the temperature difference between soldering temperature and surface temperature of chips as: T≤150°C.